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ABSTRACT

Cosmological models that include suppression of the power spectrum of density fluctuations on small scales
exhibit an exponential reduction of high-redshift, nonlinear structures, including a reduction in the rate of gamma-
ray bursts (GRBs). Here we quantify the constraints that the detection of distant GRBs would place on structure for-
mation models with reduced small-scale power. We compute the number of GRBs that could be detectable by the
Swift satellite at high redshifts (z 2 6), assuming that the GRBs trace the cosmic star formation history, which itself
traces the formation of nonlinear structures. We calibrate simple models of the intrinsic luminosity function of
the bursts to the number and flux distribution of GRBs observed by the Burst and Transient Source Experiment. We
find that a discovery of high-z GRBs would imply strong constraints on models with reduced small-scale power. For
example, a single GRB atz = 10 or 10 GRBs atz = 5 discovered by Swift during its scheduled 2 year mission would
rule out an exponential suppression of the power spectrum on scales below R, = 0.09 Mpc (exemplified by warm
dark matter models with a particle mass of m, = 2 keV). Models with a less sharp suppression of small-scale power,
such as those with a red tilt or a running scalar index, n,, are more difficult to constrain, because they are more
degenerate with an increase in the power-spectrum normalization, og, and with models in which star formation is
allowed in low-mass minihalos. We find that a tilt of én; ~ 0.1 is difficult to detect; however, an observed rate of one
GRB yr~! at z 2 12 would yield an upper limit on the running of the spectral index, a = dng/d Ink > —0.05.

Subject headings: cosmology: theory — dark matter — early universe — galaxies: formation —
galaxies: high-redshift — gamma rays: bursts — large-scale structure of universe

1. INTRODUCTION

In the years leading up to the recent launch of the Swif? satel-
lite," it has been increasingly recognized that distant gamma-
ray bursts (GRBs) offer a unique probe of the high-redshift
universe. In particular, GRBs are the brightest known electro-
magnetic phenomena in the universe and can be detected up to
very high redshifts (e.g., Wijers et al. 1998; Lamb & Reichart
2000; Ciardi & Loeb 2000), well beyond the redshift z ~ 6.5 of
the most distant currently known quasars (Fan et al. 2003) and
galaxies (Kodaira et al. 2003).

There is increasing evidence that GRBs are associated with
the collapse of short-lived, massive stars, including the associa-
tion of bursts with star-forming regions (e.g., Fruchter et al. 1999),
a contribution of supernova light to the optical afterglow (e.g.,
Bloom et al. 1999; Garnavich et al. 2003), and, most directly,
association with a supernova (Stanek et al. 2003; Hjorth et al.
2003).

As a result, the redshift distribution of bursts should follow
the mean cosmic star formation rate (SFR). Several studies have
computed the evolution of the expected GRB rate under this as-
sumption, based on empirical models of the global SFR (Totani
1997, 1999; Wijers et al. 1998; Lamb & Reichart 2000; Ciardi
& Loeb 2000). Recent determinations of the cosmic SFR out

! See http://swift.gsfc.nasa.gov.

to redshift z ~ 5 (e.g., Bunker et al. 2004; Gabasch et al. 2004;
Giavalisco et al. 2004) show that star formation is already sig-
nificant at the upper end of the measured redshift range, with
Z10% of all stars forming priortoz = 5, which would resultin a
significant population of GRBs at these redshifts. Further asso-
ciating star formation with the formation rate of nonlinear dark
matter (DM) halos and using theoretical models based on the
Press & Schechter (1974) formalism, Bromm & Loeb (2002) and
Choudhury & Srianand (2002) extrapolated the SFR and ob-
tained the GRB rates expected at still higher redshifts. These
studies concluded that a significant fraction (exceeding several
percent) of GRBs detected at Swift’s sensitivity should originate
at redshifts as high as z > 10. The spectra of bright optical/IR
afterglows of such distant GRBs could then reveal absorption
features by neutral hydrogen in the intergalactic medium (IGM)
and serve as an especially clean probe of the reionization his-
tory of the universe (Miralda-Escudé 1998; Lamb & Reichart
2000; Choudhury & Srianand 2002; Lamb & Haiman 2003;
Barkana & Loeb 2004).

In this paper, we investigate a different method of using dis-
tant GRBs and gleaning information about early structure for-
mation. The mere presence of a GRB at, say, z > 10 would
indicate that nonlinear DM structures already exist at this red-
shift: the stars that give birth to the GRBs must form out of gas
that collected inside dense DM potential wells. Structure forma-
tion in a cold dark matter (CDM )-dominated universe is ““bottom
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up,” with low-mass halos condensing first. In the current con-
cordance cosmology, with densities in CDM and dark energy of
(Qr,24) = (0.3,0.7) that have emerged from WMAP and other
recent experiments (Spergel et al. 2003), DM halos with the
masses of globular clusters (103—10° M) condense from ~3 o
peaks of the initial primordial density field as early as z ~ 25.
It is natural to identify these condensations as the sites where
the first astrophysical objects, including the first massive stars,
were born. As a result, one expects to possibly find GRBs out
to this limiting redshift but not beyond.

With a scale-invariant initial fluctuation power spectrum, the
CDM model has been remarkably successful and has matched
many observed properties of large-scale structures in the uni-
verse and of the cosmic microwave background (CMB) radiation.
However, the power spectrum on smaller scales, corresponding
to DM halo masses of M <10° M, remains poorly tested. Re-
cent observations suggest that the standard model predicts too
much power on small scales: it predicts steep cusps at the cen-
ters of DM halos, whereas the rotation curves of dwarf galaxies
suggest a flat core; it also predicts more small satellites than ap-
pear to be present in the Local Group (these and other problems
with CDM on small scales are reviewed by, e.g., Sellwood &
Kosowsky [2001] and Haiman et al. [2001]). Although astro-
physical explanations of these observations are possible, much
recent attention has been focused on solutions involving the
properties of DM. Proposals include self-interacting DM (Spergel
& Steinhardt 2000), a repulsive interaction to gravity (Goodman
2000; Peebles 2000), the quantum mechanical wave properties
of ultralight DM particles (Hu et al. 2000), and a resurrection
of warm dark matter (WDM) models (Bode et al. 2001).

By design, a common feature of models that attempt to solve
the apparent small-scale problems of CDM is the reduction of
fluctuation power on small scales. In addition, we note that re-
duced small-scale power is a direct consequence of a range of
slow-roll inflationary models, which predict a red tilt of the
power spectrum, ng; = d In P(k)/d Ink < 1, and a running of the
spectral index o = dn,/d Ink < 0 (see, e.g., Kinney [2003] for
a general discussion of power spectra predicted in different in-
flation models and Kosowsky & Turner [1995] for a discussion
of models with a running index). Interest in such models was
recently rekindled, as they appeared preferred by a combination
of CMB anisotropy data from WMA P with fluctuation statistics
in the Ly« forest (Spergel et al. 2003; Peiris et al. 2003).

The loss of small-scale power generically suppresses struc-
ture formation most severely at the highest redshifts, where
the number of self-gravitating objects is drastically reduced. In
each model, there exists a redshift beyond which the number of
GRBs (or any other object) is exponentially suppressed, and a
detection of a GRB beyond this redshift can be used to constrain
such models. A similar constraint can be obtained from the ob-
served reionization of the universe at high redshifts. For exam-
ple, Barkana et al. (2001; hereafter BHO) showed that in the
case of WDM models, invoking a WDM particle mass of m, ~
1 keV (approximately the mass required to solve the problems
listed above), the paucity of ionizing sources makes it difficult
to account for the reionization of the universe by redshiftz ~ 6.
Reionization as early as z ~ 17, as recently suggested by WMAP
observations of CMB anisotropies (Spergel et al. 2003), would
require extreme efficiencies for star formation and ionizing pho-
ton production for masses of m, <2 keV (see also Somerville
et al. [2003], who reach similar conclusions).

GRBs, if discovered at z > 6, have the potential to provide
independent and stronger constraints. The purpose of this paper
is to quantify the constraints that the detection of distant GRBs
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would place on structure formation models with reduced small-
scale power. Throughout most of our calculations, we focus
on a WDM model as a proxy, but our results are valid for any
theory that imposes a small-scale cutoff in the primordial power
spectrum.

The rest of the paper is organized as follows. In § 2, we briefly
describe our Monte Carlo approach to modifying the standard
Press-Schechter formalism, allowing us to compute halo mass
functions in WDM models. In § 3, we describe our method of
computing the GRB rates using the halo mass functions, as well
as simple models for the intrinsic GRB luminosity function. In
§ 4, we present the constraints that high-redshift GRB detec-
tions would place on the small-scale power spectrum. Finally,
in § 5, we discuss the implications of this work and offer our
conclusions.

Unless stated otherwise, throughout this paper we assume
standard cosmological parameters (2x, y, Qp, n, 0y, Hy) =
(0.73, 0.27,0.044, 1, 0.85, 71 km s~ Mpc ™), consistent with
WMAP measurements of the CMB power spectrum on large
scales (Spergel et al. 2003), and we quote all lengths in comov-
ing units.

2. MASS FUNCTIONS IN CDM AND IN WDM

In this section, we briefly review the DM halo mass func-
tions obtained in the Press & Schechter (1974; hereafter PS) and
extended Press-Schechter (see Lacey & Cole 1993; hereafter
EPS) formalisms, together with the modifications required to
model structure formation in CDM models with reduced small-
scale power. Our treatment closely follows that of BHO (which
the reader is encouraged to consult for more details). In § 2.1,
we describe the standard mass function, and in § 2.2, we mo-
tivate the parameterization of a power-spectrum cutoff in the
WDM model. In § 2.3, we describe our Monte Carlo simulations
needed to incorporate the additional effective pressure of the
WDM particles with nonnegligible velocity dispersion. Read-
ers not interested in the modeling details of the DM halos can
skip directly to § 3, which describes how we associate GRBs
with these halos.

2.1. Halo Formation in CDM

The mass function of DM halos in CDM models can be de-
rived in closed form in the PS formalism. Although the PS mass
function is in fair agreement with simulations, especially for
the “typical” halos, it underestimates the number of rare, mas-
sive halos that are most relevant for our purposes; it also over-
estimates the number of low-mass halos when compared with
large numerical simulations (e.g., Jenkins et al. 2001). Here we
adopt a modified expression obtained by Sheth & Tormen (1999),
which fits the simulated mass function to an accuracy of ~10%,

dn(>M,z)  (p) O[lno(M)) \F 1\ . 2
TaM M oM WAQ+wJ”“4}2)

(1)

Here dn/dM is the comoving number density of halos per unit
mass, M is the total mass of the halo, (p) = Qs pcrit is the mean
background matter density,

> k2 dk
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is the rms fluctuation in the mass enclosed within a region de-
scribed by a top-hat filter in real space W (M) (and its Fourier
transform W;), and © = \/aé.(z)/o(M), where a, p, and A are
fitting parameters. Sheth et al. (2001) derive this form of the
mass function by including shear and ellipticity in modeling
nonlinear collapse, effectively changing the scale-free critical
overdensity 6.(z) ~ 1.68, obtained in the case of spherically sym-
metric collapse (Peebles 1980), into a function of filter scale,

¢
6.04,2) = ﬁéc<z>{1+b[;g(z)} } )

Here b and c are additional fitting parameters (a is the same as
in eq. [1]). We use this correction to obtain the critical thresh-
old 6.(M, z) from 6.(z) [in the WDM case, .(z) itselfis modified
as described in § 2.3 below]. For the constants in equations (1)
and (3), we adopt the recent values obtained by Jenkins et al.
(2001), who studied a large range in redshift and mass: a =
0.73,4=0.353, p = 0.175, b = 0.34, and ¢ = 0.81.

2.2. Power Spectrum Cutoffs

Structure formation in WDM matter models differs from that
in CDM models in two main ways: (1) the free-steaming veloc-
ities of the particles wash out small-scale overdensities; (2) the
residual particle velocities, although they redshift away as 1+ z,
create an effective “pressure,” which slows the early growth
of perturbations. Both effects suppress structure formation on
small scales, but for the sake of generality we discuss the two ef-
fects separately. Free streaming is easily included computation-
ally as a suppression of the power spectrum of fluctuations, and
it is qualitatively similar, for example, to changes in the inflation-
ary potential, which determines the power spectrum. Likewise,
a red tilt of the power spectrum, ny, = d In P(k)/dInk < 1, or
a running of the spectral index, o = dn;/dInk < 0, is easily
included in the analysis by simply modifying the power spec-
trum in equation (2). On the other hand, the effective pressure
in WDM models is more difficult to include computationally
and is specific to the WDM model; it is discussed separately in
the next subsection.

Free streaming manifests itself as a cutoff in the power spec-
trum, which “flattens” o(M ) for small M. This effect becomes
more severe as the WDM particle mass is lowered, as demon-
strated in the bottom panel of Figure 1 for m, = 2 and 1 keV.
To produce a given energy density contribution, €2, (where we
take €, = Qyy — ), the required WDM particle mass is de-
termined by m,n, o< .42, where the present number density,
ny, follows from the particle distribution function. This can be
used (see BHO) to relate the particle mass and the rms velocity
dispersion, v;y;s:

AN g NP my NP

ms(2) = 0.0437(1 x ,
vms(2) = 0.0437( +Z)(0.15> (1.5) <1keV>

(4)

where g, is the effective number of degrees of freedom of
WDM. The usual assumption of a fermionic spin-% particle
yields g, = 1.5. This modifies the CDM power spectrum (which
we take from Eisenstein & Hu 1999) by multiplying it with the
square of a transfer function (Bode et al. 2001):

To(k) = [1 + (ekR)™] ™", (5)
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Fic. 1.—Top: Critical overdensity threshold as a function of scale, evalu-
ated for z = 10. The dotted curve represents the scale-free critical overdensity
6.(z). The solid curve corresponds to CDM, the long-dashed curve to a WDM
particle mass of m, = 2 keV, and the short-dashed curve to m, = 1 keV. All
curves incorporate the correction from eq. (3), except for the dotted curve.
Bottom: The rms mass fluctuation in top-hat filters of mass scale M. As above,
the solid curve corresponds to CDM, the long-dashed curve to m, = 2 keV (or
power-spectrum cutoff scale R. = 0.087 Mpc), and the short-dashed curve to
my = 1keV (or R, = 0.193 Mpc).

with parameters e = 0.361, 7 = 5,and v = 1.2. The power spec-
trum is reduced to half its value in CDM at k£ = 1/R., at which
the cutoff scale, R, is given by

Q12 0.15 g —-0.29 m, ~1.15
RCO.201<0.15> (ﬁ) (1 keV> - (6)

where R, is in comoving megaparsecs. Here, we only consider
particles with fermionic spins, i.e., g, = 1.5, but all results can
be scaled for arbitrary values of g, using the equation above.
The corresponding mass scale, M. = (4/3)7R3(p), is

Quh? R\’
M, =1.74x108 M. 7
x ( 0.15 ) <0.1 Mpc> © @

We will use R, and m, interchangeably, with equation (6) re-
lating them.

2.3. Effective Pressure of WDM Particles

As mentioned above, structure formation in WDM models
is further suppressed by the residual velocity dispersion of the
WDM particles, which delay the growth of perturbations. We
use the results of BHO, who made an analogy with an ideal gas
whose temperature corresponds to the velocity dispersion of the
WDM. In this case, the pressure delays the collapse and can be
effectively included in the mass function computed in the EPS
analysis by raising the critical linear extrapolated overdensity
threshold at collapse 6.(z). BHO computed the critical overden-
sity by following the collapse of spherical perturbations, using a
one-dimensional, spherically symmetric Lagrangian hydrody-
namics code originally developed by Thoul & Weinberg (1996).
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The top panel in Figure 1 shows 6. (adopted from BHO) as a
function of M, at the fixed redshift z =10. The dotted curve
represents the scale-free critical overdensity 6.(z) arising from
spherical collapse. The solid curve corresponds to CDM, the
long-dashed curve to WDM with m, = 2 keV, and the short-
dashed curve to m, = 1 keV. The threshold is found to increase
sharply below the mass scale
-1 N 172
sf ¢ Qh
om0 () (22)
me \ 142\

* (1 kev> (3000) Mo, ®
which can be shown (see BHO) to correspond to an analog of
a “Jeans mass,” i.e., the scale of the objects whose collapse is
significantly delayed by the pressure.

Since 6.(M,z) is a function of scale in WDM models, one
cannot obtain WDM mass functions from the standard EPS anal-
ysis, which uses the symmetry in the random walk trajectories
of § versus M about a fixed threshold (Lacey & Cole 1993).
Instead, we compute the mass functions using Monte Carlo sim-
ulations. We generate random realizations of trajectories 6(M ),
as the scale is decreased from M ~ oo, and generate the his-
tograms of the scales at which the trajectory first crosses
the 6.(M, z) threshold. Each step in the random walk, Aé(M),
is Gaussian distributed with a variance of agtep(M JAM) =
o*(M) — 0>(M — AM). When constructing such a random
walk, one must be careful to use steps small enough such that
as the smoothing scale M is decreased by A M, the likelihood
that the §.(M, z) threshold is crossed between M and M — AM
is small. The physical reason for this is the so-called cloud-in-
cloud problem: to ensure that we do not step over a collapsed
halo as we decrease the smoothing scale M [i.e., that our 6(M)
trajectory has not gone above 6.(M, z) and then dropped below
it again within the range A M ]. We use an adaptive step size, set
so that the barrier 6.(M, z) is at least 7 ogep away from 6(M ),
with a minimum resolution of AM = M/100. Formally, defin-
ing A7M such that [6.(M,z) — 6(M)]/0gep(M, A7M ) =7, our
step size is AM = MAX(M/100, A;M). We find that these pa-
rameters efficiently reproduce the standard EPS mass function
in the CDM case to an accuracy of a few percent.

We also find that a starting mass for the random walk trajec-
tories as small as ~10'® M, is sufficient to obtain accurate mass
functions at z = 0. The starting mass can be decreased as red-
shift increases, since the characteristic mass that is collapsing
gets smaller as redshift increases. A starting mass of ~1012 M,
is sufficient at z = 15.

The number of simulated trajectories required to obtain ac-
curate mass functions is a strong function of redshift. This is to
be expected, since virialized structure becomes very rare at high
redshift. We show this effect in Figure 2, where we plot the frac-
tion of the total mass collapsed into halo of mass M or higher,
F(>M,z), as a function of redshift. The shaded region shows
the collapsed fraction in CDM, with a range of low-mass cut-
offs corresponding to virial temperatures 300 K < Ty;; < 10* K
(see discussion in § 3 below). The other curves correspond
to WDM particle masses of m, = 3.0, 2.5, 2.0, 1.5, 1.0, and
0.5 keV (top to bottom) and do not assume any low-mass
threshold (effectively, M = 0). Introducing the same two low-
mass cutoffs as in the CDM case would leave the WDM results
essentially unchanged, since the power is already strongly sup-
pressed in excess of these cutoffs at the high redshifts where
these low-mass halos would dominate the collapse fraction (see
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Fic. 2.—Fraction of the total mass collapsed into halos of mass M or greater,
F(>M,z), as a function of redshift. The shaded region shows the collapsed
fraction in CDM, with a range of low-mass cutoffs corresponding to virial tem-
peratures 300 K < T.;; < 10* K. The other curves correspond to WDM particle
masses of m, = 3.0, 2.5, 2.0, 1.5, 1.0, and 0.5 keV (fop to bottom) and do not
assume any low-mass threshold (effectively, M = 0). The cutoffs used in the
CDM case would leave the WDM results essentially unchanged (see discussion
in text).

the discussion below or Fig. 7 in BHO). As can be seen, sim-
ulating high-redshift mass functions for small particle masses
can be prohibitively expensive computationally. For example,
we find that accurate mass functions for m, < 1 keVatz > 15
require 210° Monte Carlo runs, as less than one in a million
(M) trajectories crosses 6.(M, z).

Figure 3 shows sample cumulative mass functions at red-
shifts z = 10 (top) and z = 15 (bottom). The solid curves cor-
respond to CDM; the dotted curves correspond to WDM
models with m, =2 and 1 keV (top to bottom). The dashed
curves are mass functions for the same two WDM models but
incorporate only a power-spectrum cutoff, ignoring the effec-
tive pressure of WDM. The WDM mass functions were created
with 10° Monte Carlo runs as explained above. [ Note that our
results are slightly different from those of BHO; this is due to
a small correction to BHO’s derivation of R. and the corre-
sponding o(M).]

As can be seen from Figure 3, including the pressure term in
the WDM models further suppresses the number of halos rel-
ative to the models that include only the power-spectrum cutoff.
Furthermore, the relative importance of the pressure term in-
creases with increasing redshift. As anticipated, the overall dif-
ferences between the WDM and CDM mass functions increase
toward higher redshift. This is because in the early universe, the
characteristic scale of collapsing and virializing halos was smaller
and closer to the cutoff scales discussed above. These large
differences aid in discriminating between models with different
power-spectrum cutoff scales.

3. THE EVOLUTION OF THE GRB RATE
WITH REDSHIFT

In this section, we describe a model for the expected evolu-
tion in the rate of all GRBs, as well as the fraction that can be
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Fic. 3.—Cumulative mass functions (number of halos with masses greater
than M Gpc ) at redshifts z = 10 (top) and z = 15 (bottom). The solid curves
show mass functions in CDM models; the dotted curves correspond to WDM
models with m, = 2 and 1 keV (fop to bottom); the dashed curves are mass func-
tions in the same two WDM models, but incorporating only a power spectrum
cutoff (§ 2.2) and no WDM pressure (§ 2.3). The WDM cumulative mass func-
tions were created with 10° Monte Carlo realizations of §(M ) trajectories.

detected by Swift. As is commonly done in the context of pre-
dicting the rate of GRBs at high redshift (Bromm & Loeb 2002;
Choudhury & Srianand 2002), we assume that the GRB rate den-
sity (the number of GRBs per unit time per unit comoving vol-
ume), pgre(2), is proportional to the global SFR density,

PGrB(2) ~ K p.(2), )

where K is the proportionality constant in units of Mgl, and
P+ (2) is the stellar mass produced on average per unit comoving
volume per unit time. First we discuss the evolution of the SFR
and then the normalization of the corresponding GRB rate. In
§ 3.1.2 we discuss the uncertainties of our approach.

3.1. Star Formation Rate in Halos

We estimate the global SFR density at redshift z as
[9) 00 z 2 M /
p*(z)ze*ib/ dM/ dz’MM
Qum Mmin 00

oMoz’
where e, is the efficiency parameter for the conversion of gas
into stars, M dM On(>M, z')/OM is the mass density contributed
by halos with masses between M and M + dM atredshiftz, #(z) is
the age of the universe at redshift z, and P(7) is the probability
per unit time that new stars form in a mass element of age 7 ~
t(z) — t(z'). We adopt the fiducial value of e, = 0.1 (see, e.g.,
Cen 2003), but note that our results are insensitive to this value,
since we normalize the coefficient X in order to match our total
GRB rate with observations (the important assumption is only
that e, is constant; this assumption is probably conservative, as
discussed below). We also note that the simple time derivative of
the halo mass function in equation (10), in general, contains a
contribution from mergers between halos, in addition to the for-
mation of new halos (see, e.g., Sasaki [1994] for a discussion).
However, the integral in equation (10) is sensitive only to the

P(r), (10
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Fic. 4—Top: SFR densities assuming instantaneous star formation in a
collapsing halo (/eff) and a finite exponential spread in star formation times
(right). The solid curves assume a minimum virial temperature T,;; = 10* K of a
halo for star formation and include the effect of power-spectrum suppression
below various cutoff scales: R. = 0 Mpc (m, — o0; i.e., standard CDM), R, =
0.193 Mpc (m, = 1 keV), and R. = 0.087 Mpc (m, = 2 keV) (top to bottom).
The dashed curves assume a minimum temperature, 7yi = 300 K, with the same
cutoff scales. The dotted curves correspond to models that include the addi-
tional effect of the effective pressure of WDM particles with mass m, = 2 and
1 keV (top to bottom). The shaded area highlights the expected range in SFR
densities in CDM models with minimum virial temperatures 300 K < 7y <
10* K. Bottom: Fraction of all GRBs that originate at redshifts higher than z in the
models corresponding to the top panels.

total virialized mass above mass My, so that this ambiguity
should not affect our results (although we note that the formation
of new halos dominates in our case, since the relevant halos are
above the nonlinear mass scale).

The minimum mass, My,;,, depends on the efficiency of gas
cooling and collapsing into a DM halo. Without molecular hy-
drogen, My, corresponds to a halo with virial temperature,
Tyir ~ 10* K; with Hy, Tyir ~ 300 K (Haiman et al. 2000; we
use the conversion between halo mass and virial temperature as
given in Barkana & Loeb 2001). The amount of H; present in
the early universe is uncertain, so below we present results for
both Tyir > 10* K and T > 300 K. We note that only the CDM
mass functions are sensitive to these cooling thresholds (see
Fig. 4). In our models that incorporate small-scale power sup-
pression, as the characteristic collapse scale approaches the cool-
ing cutoff, 7, the cooling cutoff has already become smaller
than the power-spectrum cutoff, R.. Hence, we do not distin-
guish between models with 7y > 10* K and Ty;; > 300 K for
the WDM particle masses presented below.

In the presence of an ionizing background, the cosmologi-
cal Jeans mass, above which gas can collect in DM halos, is
increased, corresponding to virial temperatures 210* K (Rees
1986; Efstathiou 1992). Early work on this subject (Thoul &
Weinberg 1996) suggested that an ionizing background would
completely suppress star formation in halos with circular veloc-
ities veire < 35 km s~! and partially suppress star formation in
halos with 35 km 57! < vgire < 93 km s—!. More recently, Dijkstra
et al. (2004) found that such a suppression is likely to be coun-
tered by strong self-shielding for z = 3. For concreteness, we
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completely suppress star formation in halos with T,;; < 10* K
for z < 7 (assumed to correspond to the redshift of reioniza-
tion, when the background radiation is established; e.g., Mesinger
& Haiman 2004) and increase the cutoff to veyre < 55 km s~!
(Tyir < 1.1 x10° K) for z < 3 (when the intermediate halos
with 10 km s™! < veire < 55 km s~ ! are assumed to cease self-
shielding). As can be seen in Figure 4, these assumptions only
weakly affect our results, because most of the contribution to
p«(2) at these redshifts comes from more massive halos. Fur-
thermore, we already bracket a large range of expected GRB
distributions by presenting results for both Ty; > 10* K and
Tyir > 300 K.

Finally, we describe two different functional forms for the
stellar formation probability density P(7).

3.1.1. Instantaneous Star Formation

The simplest assumption is to adopt P(7) to be a Dirac delta
function,

P(1) = 6(7). (11)

This essentially assumes that a fraction €,(£2,/€2,) of the cur-
rently virializing mass is instantaneously converted into stars
and that previously virialized mass does not contribute to p.(z).
With this assumption, equation (10) becomes

Q [* | dz0n(>M,2)

raO=cq | My

min

M. (12)

Since the WDM mass functions are obtained with computation-
ally expensive Monte Carlo simulations, we only present their
results for this simple model; results for mass functions incor-
porating a power-spectrum cutoff are presented for both P(7)
models. In numerically calculating derivatives of the mass func-
tions in WDM [Anr(>M,z)/ Az], we use z step sizes of Az ~
0.2—0.5 [at high redshifts An(>M,z)/Az is a flatter function
of z, so good accuracy can be achieved even with a larger Az
step size]. The resulting SFR densities are shown in the top left
panel of Figure 4. The solid curves assume 7y, > 10* K and in-
clude only the effect of the power-spectrum cutoff, assuming
cutoff scales of R, = 0 Mpc (m, — oo; i.e., standard CDM),
R. =0.193 Mpc (m, =1 keV), and R. = 0.087 Mpc (m, =
2 keV) (top to bottom). The dashed curves assume Ty >
300 K, with the same cutoff'scales. The dotted lines include the
additional effect of the effective pressure of WDM particles
with a mass of m, =2 keV and m, = 1 keV (top to bottom).
Since power is strongly suppressed on scales in excess of 7y >
10* K for these WDM particle masses cutoff scales, results for
Tyir > 10* K and Ty > 300 K are virtually the same. In CDM
models, the range of virial temperatures result in a wider range
of expected SFR densities, highlighted by the shaded area. Our
results are within the uncertainties of existing observational
estimates of the SFR density in the currently available, low-
redshift (z < 2) regime (e.g., Schiminovich et al. 2005). Our
SFR density increases out to z 2 6 (and to still higher redshift
in the 7y > 300 K case) and is consistent with recent estimates
at 2 < z £ 6 from the Hubble Ultra Deep Field (Bunker et al.
2004), the GOODS surveys (Giavalisco et al. 2004), and the
FORS Deep Field on the VLT (Gabasch et al. 2004), after they
incorporate a factor of 5—10 increase in the SFR (Adelberger
& Steidel 2000) due to dust obscuration. Note that the peak of
the SFR density falls between 3 < z <12 in our range of models
and that the SFR remains significant (exceeding its present-day
value) out to redshifts as high as z 2 25.
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We stress that instant star formation is the most conserva-
tive model in setting observational limits to a power-spectrum
cutoff, as it predicts the largest number of high-redshift GRB
detections. Any other, more realistic form for the stellar for-
mation probability density, P(7), delays GRB events, thereby
smearing the event rate toward lower redshifts and decreasing
the likelihood of detecting high-redshift GRBs, especially in
the presence of small-scale power suppression (see § 4.1).

3.1.2. Exponential Approximation for P(T)

We alternatively assume that stellar formation occurs on a
timescale corresponding to the dynamical time, #4yn ~ (Gp)™?
(Cen & Ostriker 1992; Gnedin 1996):

fz) — 1) [_ 1(z) — 1(z)
2 p

dyn l dyn

Pl — 1)) = ] (13)

where p(z) &~ A.puit(z) is the mean mass density interior to
collapsed spherical halos (e.g., Barkana & Loeb 2001), and A,
is obtained from the fitting formula in Bryan & Norman (1998),
with A, = 1872 ~ 178 in the Einstein—de Sitter model.

Since there is no unique, physically motivated, and self-
consistent way to track individual mass elements and halo merg-
ers in the EPS formalism, assigning an age, 7 = #(z) — #(z'), to
each mass element is somewhat arbitrary. The problem arises
because two neighboring mass elements that are part of the
same halo can in EPS be flagged as belonging to two different
halos with different masses (Somerville & Kolatt 1999; see also
Sheth & Pitman 1997 and Benson et al. 2005). Here we assume
that a mass element ““starts its clock™ (7 = 0) when it first be-
comes part of a halo with mass M > M, and that it carries
around that clock through any future mergers without reset-
ting it. This ambiguity is bypassed in § 3.1.1, since P(7) is as-
sumed to be a delta function.

We present our SFR densities for this model in the top right
panel of Figure 4. The curves correspond to the same models
as shown in the top left panel, except the WDM models with
pressure (dotted curves) are not included. As expected, intro-
ducing a finite width to the stellar formation probability density
preferentially suppresses high-redshift star formation.

We remark that the sharp drop at z = 7 in the 7,3 > 300 K,
CDM curve is an indicator of the assumed sudden reionization
(Bromm & Loeb 2002; Choudhury & Srianand 2002). This fea-
ture is a direct prediction of reionization models and is indeed
likely to be sharp (see, for example, Cen & McDonald [2002]
for a discussion, as well as a claim of having detected a related
feature in the Ly« transmission spectrum of distant quasars).
Given a sufficient number of GRBs, the shape and location of
such a feature can be mapped out and used as a probe of the
epoch of reionization. We postpone a detailed exploration of the
detectability of such a feature to a future paper.

3.2. The GRB Rate Associated with Star Formation

In order to constrain the proportionality constant K by match-
ing the predicted and observed GRB rates, a luminosity function
(LF) for the GRB population needs to be assumed. Observations
have shown that GRBs are far from being standard candles (and
even if the total GRB energy has a nearly universal value, the
burst luminosity will vary; Frail et al. 2001). However, the deter-
mination of their intrinsic LF has been hampered so far by the
lack of a sufficiently large sample with detected redshifts. On the
other hand, fits to the observed flux distribution suffer from a
degeneracy between the LF and the SFR that prevents an inde-
pendent determination of both quantities.
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On the theoretical side, simulations of jets in the collapsar
model (MacFadyen & Woosley 1999) have shown that the jet
energy (and hence luminosity) is a decreasing function of the
viewing angle 6 relative to the jet axis, triggering studies of
structured jets (Rossi et al. 2002; Zhang & Mészaros 2002).
Here, following Rossi et al. (2002), we assume that the lumi-
nosity has a form L = Lyin(6jet/0)* for Oeore < 0 < bie, where
Ocore defines the core of the jet (within which the luminosity is
constant), and 0j; defines the outer edge of the jet (above which
the luminosity drops to zero). Current observations have shown
that Ocore < 0.06 rad and 6¢; 2 0.6 rad (Bloom et al. 2003). Our
results are insensitive to the precise value of ... below the
observed minimum value, and therefore we set it to zero for
simplicity. The GRB rate atz = 0 is, however, dependent on 0;c
(or equivalently, the inferred minimum luminosity L.,,; see
also Guetta et al. 2004).

For each of the models for the SFR described in the pre-
vious section, we determine the constant L, by finding the
best fit between the theoretical and the observed flux distribu-
tion of bursts (unnormalized; i.e., using only the shapes of the
distributions). In this fitting procedure, we fix the jet angle to be
it = /2 (but consider the alternative i = 0.6 rad, the low-
est value directly inferred from observations so far; see below).
In practice, a distribution of viewing angles is inferred for the
theoretical GRBs (assuming random jet orientations) and com-
pared to the distribution dn/d@ inferred from the bursts detected
by BATSE (see Perna et al. [2003] for details of the analysis).
The proportionality constant K is then separately determined by
imposing that the total number of bursts foﬂ/z dO(dn/d6) above
the BATSE sensitivity (~0.25 ph s~! cm~2) be 667 yr~!. Once
these two model parameters are determined, the number of
bursts observed at redshifts greater than z over a time interval
Atyps and solid angle AS,

Af > pGRB(Z/) dV(Z/) Omax (")
= —— Algps rPoReE J P ,
N(>z) 47 fob /Z dz 0+z7) d /0 () df

(14)

can be found for the Swift sensitivity (Fjim ~ 0.04phs~!ecm™2).
We adopt a solid angle AQ = 0.34 sr, for the fully coded de-
tector area of Swift. In the above equation P(6)df = sin 6d0 is
the probability of viewing a randomly oriented GRB at an angle
from the jet axis between 6 and 0 + d6, the factor 1/(1 + z) ac-
counts for time dilation, and dV(z)/dz is the comoving volume
in our past light cone per unit redshift,

dr

dV(z) _4 c@
dz

15
dz T 14z ’ (15)

where c is the speed of light, and d;(z) is the luminosity dis-
tance. The maximum angle 6,,,, at which a burst can be detected
at a given redshift is found by numerically inverting the equation

lim = ﬂ%, (16)
rd2(@)(1 1 2)

where « is the power-law spectral index of the photon num-

ber spectrum of the burst (see Lamb & Reichart [2000] for

details).

For illustration, in Figure 5, we show the fraction of all bursts
at redshift z that would be detectable by BATSE (dashed curves)
and by Swift (solid curves). The lower/upper curves correspond
to jet angles of 8y = /2 and 0.6 rad, respectively. In our fi-
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Fic. 5.—Fraction of all GRBs that are brighter in our model luminosity
function than the detection thresholds of BATSE (dashed curves) and Swift
(solid curves). The lower/upper curve in both cases corresponds to jet angles
of 8y = w/2 and 0.6 rad, respectively. In each case, we determine the mini-
mum burst luminosity L i, so that the flux distribution predicted in our CDM
model with a threshold virial temperature Ty, = 10* K best fits the distribution
observed by BATSE.

ducial model, Swif detects all GRBs out to z ~ 1 and ~1% of
GRBs at z ~ 10.

The value of the normalization constant K, inferred from the
BATSE data, is dependent on the value of L;,. For example, in
the CDM models with instantaneous star formation and T;, >
10* K, for our fiducial choice of Biet = m/2, we find the best-
fitting value of Ly, = 1.5 1033 ph s~ ! and the local GRB rate
of porp(z = 0) = 6 Gpc > yr~!, while for 6, = 0.6 rad, we find
instead Ly, = 10°° ph s~!and pgre(z = 0) = 1 Gpe =3 yr .

Nevertheless, we find that our subsequent predictions for
the number of bursts at high redshift by Swif¢ are only mildly
dependent on the choice of ;.. This is because as Ly, is in-
creased, the normalization factor K decreases. This tends to
compensate for the increase in the observable number of bursts
because there is a larger fraction of bursts at higher luminosi-
ties. As can be seen in Figure 5, at high redshift only the bright
power-law tail of GRBs are detectable, and the two effects nearly
cancel. We note that the slope of N(>z) depends on the power-
law slope of the LF. Our model has dn/dL o< L™7, with v =2
in the high-luminosity tail—for comparison, by fitting a single
power law to dn/dL, Firmani et al. (2004) find a shallower
slope, with v ~ 1.6. If this slope is accurate for high luminos-
ities, it would somewhat increase the number of high-z GRBs.
Of course, once Swiff data have been gathered, they will provide
new and independent constraints on the GRB luminosity func-
tion, facilitating more accurate estimates of the high-z GRB rate.

3.3. Uncertainties in GRB Redshift Evolution

Our most important model assumptions are that e, and K are
constant. Observations of nearby dwarf galaxies (Taylor et al.
1999; Walter et al. 2001) yield a range of efficiencies, €, ~
0.02—-0.08. These values correspond to the low halo mass scales
that form at high redshifts, although there is no clear direct cor-
respondence between the first-generation halos and these local
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dwarfs. Numerical simulations of metal-free star formation at
high redshift (Abel et al. 2002; Bromm et al. 2002) suggest that
the first generation of stars form in minihalos with even lower
efficiencies, €, < 0.01. Such a reduction in minihalo star for-
mation (T, < 10* K) suggests that at high redshifts, the true
GRB rate is closer to our Ty, > 10* K curve.

On the other hand, since GRB progenitors involve high-mass
stars (MacFadyen & Woosley 1999), and the stellar initial mass
function (IMF) is expected to be more top heavy in the early
universe, K might increase at high redshifts, increasing pgrg(2)-
We note that the minimum mass of stars that lose their hydrogen
envelope and may thus produce GRBs can also strongly depend
on metallicity. Heger et al. (2003) find that this minimum mass
increases from ~30 M, at solar metallicity to ~100 M, at zero
metallicity (see their Fig. 3). However, the trend is still more likely
to be for K to increase toward high redshift, because >30 M,
stars are relatively rare in local galaxies with a Salpeter IMF,
while the simulations of Abel et al. (2002) and Bromm et al.
(2002) suggest that metal-free star formation at high redshift
may produce exclusively >100 M., stars. Thus, since they are
expected to act in opposite directions, the redshift evolutions of
€. and K might compensate somewhat for each other. The rather
high angular momentum of the collapsing star required to pro-
duce a GRB is more easily achieved if the star is in a binary,
and binaries are found to be more frequent at low metallicity
(i.e., high z; Fryer et al. 1999). It is, however, unclear whether
binaries do form in the first generation of truly metal-free halos.
Simulations following direct cosmological initial conditions by
Abel et al. (2002) find a single star with no further fragmenta-
tion; however, different simulations with somewhat more arti-
ficial initial conditions (a rotating cylinder) find efficient binary
formation (Saigo et al. 2004).

It is conceivable that at high redshifts, a WDM universe
could mimic the GRB rates of a CDM universe by compen-
sating for a loss of small-scale power with higher efficiencies of
GRB production (e.g., a higher K value at high redshifts) and
visa versa. However, we note that such a redshift evolution is
unlikely to be sharp enough to significantly affect our conclu-
sions. Even a power-law evolution of K would be insufficient
to compensate for the exponential suppression of small-scale
power in our models. For example, from Figure 6 we note that
in order for GRB rates in WDM models with m, ~ 2 keV to
match GRB rates in CDM models at z > 10, the product €, K
would need to be a factor of 10 higher than the overall average
value determined from the lower redshift BATSE sample. For
my =~ 1keV, €,K would have to be ~100 times larger atz > 10.
These differences only increase with increasing redshift, and if
such an increase is present, it could, in principle, be detected by
studying the shape of the GRB redshift distribution function
(see §4.2).

Recently, Wise & Abel (2004) calculated primordial super-
novae (SNe) rates with a semianalytic analysis of feedback
mechanisms and evolution of primordial stellar environments,
constraining their results with the measured WMAP optical depth
to electron scattering, 7, = 0.17. With ab initio knowledge of
GRB progenitors, an analogous analysis could be performed
to predict the GRB rate as a function of redshift, replacing the
proportionality constant, K, assumed in this paper. In practice,
our current knowledge of the physics of GRB progenitors and
ofthe various feedback processes in the early universe is highly
uncertain, and such an approach would introduce additional
free parameters. Nevertheless, this approach could be useful in
the future, since some of the free parameters may be indepen-
dently constrained. For example, in addition to GRBs, early star
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Fic. 6.—Expected Swift detection rates of GRBs occurring at redshifts
greater than z. The curves correspond to the same models as shown in Fig. 4,
and the horizontal line denotes the detection threshold of one GRB yr~!. The
top panel assumes instantaneous star formation; the bottom panel assumes a
finite exponential spread in star formation times.

formation will be accompanied by observable SN explosions
(e.g., Miralda-Escudé & Rees 1997), the production of heavy
elements (e.g., Haiman & Loeb 1997), remnant stellar black
holes (e.g., Volonteri et al. 2003; Volonteri & Perna 2005), and
the reionization of the IGM. Observations of these effects can
further reduce the uncertainties associated with early star forma-
tion history and GRB progenitors, and thus ultimately reduce
uncertainties on the expected primordial GRB event rates (for a
discussion of such future constraints, see Wise & Abel [2004],
who also emphasize that SNe observations can constrain many
properties, such as mass, luminosity, metallicity, and redshift,
of the progenitors). Finally, early “minigalaxies” may also be
directly detectable (Haiman & Loeb 1997) by the James Webb
Space Telescope.”

4. CONSTRAINTS ON STRUCTURE
FORMATION MODELS

The model outlined in the previous sections can be used to
compute the evolution of the GRB rate with redshift, as well as
the flux distribution of the bursts, allowing us to incorporate the
detection threshold of Swiff. In this section, we present con-
straints on WDM models, first from the total number of GRBs,
and then we present a potentially less model-dependent con-
straint from the distribution of a luminosity-limited subsample
of the bursts.

4.1. Absolute GRB Detection Rates

The most straightforward constraints follow from the total
Swift burst detection rates. In Figure 6, we show the cumulative
Swift GRB detection rates produced by our models. The curves
correspond to the same models as shown in Figure 4, with the
shaded area enclosing the range of expected distributions in CDM
models for different limiting virial temperatures for star formation

2 See http://www.jwst.nasa.gov.
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TABLE 1

REDsHIFT IN SEVERAL WDM MobELs BEYOND WHICH Swift
Wourp DeTEcT 1 orR 10 GRBS PER YEAR

Model 1 GRB yr~! 10 GRBs yr!
CDM:
Tir > 104 K oo z29.40-11.6 z248-59
Tyie > 300 Koo, 2213.4-16.0 22 64-76
P(k) suppr:
R. < 0.193 Mpc 22 63-7.5 z23.5-43
R. < 0.087 Mpc z27.8-93 z242-51
R. < 0.055 Mpc 22 8.4-10 z24.5-54
WDM:
zZ26.7 zz39
zz 8.5 z2 48
z295 z252

in early halos. The top panel assumes instantaneous star forma-
tion, and the bottom panel assumes a spread of star formation
times as discussed above. The horizontal line denotes a detection
rate of one GRB yr~!, roughly the lower limit for detections in
Swift’s 2 year nominal operation.

Figure 6 shows that detections of bursts originating at redshifts
larger than z ~ 15 are improbable even in CDM models. Con-
straints on WDM models can be simply read off this figure by
noting the redshifts at which the curves corresponding to a given
model intersect the horizontal line. For example, for a WDM
particle mass of m, = 1 keV, a detection rate of one z > 7 GRB
yr~! is expected. That number drops to one z > 8 GRB per
10 yr, which is unlikely to be detectable. 4 detection of a single
z 2 10 GRB by Swift would rule out models incorporating WDM
or equivalent power-spectrum cutoffs of my <2 keV (R, 2
0.087 Mpc) and would therefore significantly improve the exist-
ing constraints.

These constraints on models with an exponential cutoff in the
small-scale power spectrum are summarized further in Table 1.
The low end of the quoted redshift range in each case in the top
five rows corresponds to the exponential star formation, and the
high end to instantaneous star formation (the models that in-
clude the effective pressure of WDM particles, listed in the bot-
tom three rows, show only the latter). The rightmost column in
the table shows the redshifts beyond which 10 GRBs yr~! would
be detectable.

The constraints shown in Table 1 have been derived assuming
a fixed cosmological model, varying only the cutoff scale for the
power spectrum. However, in principle, the effects of the cut-
off can be mitigated by changing other parameters. In particular,
the GRB rate depends exponentially on the normalization of
the power-spectrum oyg. In order to quantify the robustness of our
results, we have recomputed the redshifts corresponding to one
and 10 GRBs yr~! in the CDM model with Ty;; >10* K and in
the model with the power-spectrum cutoff at R, = 0.193 Mpc
but using a high value of g = 1 rather than our fiducial choice of
og = 0.85. We have found that this increases the redshifts by
Az < 2;in particular, the R, = 0.193 Mpc model could still be
ruled out by observing one GRB yr! atz=9.7.

The corresponding constraints in models with a red tilt or a
running of the scalar index are summarized in Table 2. Overall,
in the CDM model with the more stringent limit of T, > 10* K
for star formation, the effect of introducing a tilt with n; = 0.9,
or a running of the index with « = dn,/d In k = —0.05 is com-
parable to that of the exponential cutoff in the power spectrum
due to a m, =~ 2 keV WDM particle: the GRB rate falls below
one per year at z 2 8. However, as the table shows, these con-
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TABLE 2

REDSHIFT IN MODELS WITH A RED-TILTED OR RUNNING ScALAR INDEX,
Fixep Swift GRB RATEs (as IN TABLE 1)

Model 1 GRB yr~! 10 GRBs yr~!
Red Tilt (n, = 0.9)
Toir > 10* Koo, z% 7.7-93 z24.1-5.0
Toir > 300 Koo z210.5-12.6 22 4.8-63
og =1 (Tyir > 10*K) cocevvoeee. z%9.1-11.1 7% 4.8-58
og =1 (Tyir > 300 K)............. z212.2-147 z %5873
Running (o = —0.05)

Toir > 10 Koo z274-89 z 2 4.0-4.9
Tyie > 300 Koo z % 8.8-10.5 z%43-54
g =1 (Tyir > 10* K) ooecc..... z 2 8.7-10.5 z24.6-5.6
og =1 (Tyi > 300 K)............. z2102-123 z251-64

straints are less robust than those for WDM. The suppression
of the power spectrum is a shallow function of scale, and, unlike
in the case of the exponential suppression, the GRB rate can be
increased by either a relatively modest change in the normalization
og or by allowing star formation in smaller halos down to Ty =
300 K. The table suggests that a detection rate of one GRB yr~!
even atz 2 14 cannot be used to distinguish a tilt of g ~ 0.9 from
models with n; = 1 but with alower 7,;; > 300 K and a higher o.
However, a detection rate of one GRB yr~! at z = 10 would lead
to a relatively robust upper limit on the running of the spectral in-
dex, o = —0.05.

4.2. Redshift Distribution of a Luminosity-Limited Sample

A method that is less dependent on models of the GRB LF and
that could, in principle, discriminate against WDM models and
models with a power spectrum cutoff is to construct a redshift
distribution of a luminosity-limited subsample of the observed
bursts. Under the relatively weak assumption that the LF of GRBs
does not evolve with redshift (but without any other assumptions
about the LF), this redshift distribution would be proportional
to the distribution of all bursts. In the bottom panels of Figure 4,
we plot the fractional distribution of all bursts,

[ pars@)AVE [ [, poreE@) dV ()]
f:,/z dz (+z) do [/0 dz (1+z) do

(17)

This quantity is then independent of the value of the normali-
zation K and of the shape of the GRB LF discussed above.
Such intrinsic event rate distributions can be constructed by
tracking the redshift distribution only for the subset of GRBs
above a minimum luminosity that allows one to see themup to a
given high redshift and neglecting GRBs that are fainter than
this threshold. By construction, all of the remaining GRBs are
luminous enough to be detectable up to the chosen redshift and
so trace out the intrinsic event rates, f'(i.e., independently of the
shape of the LF and K). The high sensitivity of Swifi makes this
still a sizable sample. For example, in the case of the standard
CDM model, we find that ~30% of the bursts would still remain
by choosing only the ones above the minimum luminosity that
allows for their detection up to z ~ 10. Likewise, ~20% of
bursts would constitute the sample with the minimum lumi-
nosity that allows for their detection up to z ~ 15. The bottom
panels of Figure 4 reveal that ~50% of these remaining bright
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GRBs would be at redshifts z = 5, where the curves start show-
ing significant deviations from one another. In the CDM case,
this would translate to a sample of ~20 high-redshift (z= 5)
GRBs with which to trace out the redshift distribution in the
bottom panels of Figure 4.

Finally, we note that even for this high tail of the LF, the ef-
ficiency with which ultra—high-redshift GRBs can be identified
is likely to be a decreasing function of redshift itself. Although
the network of follow-up instruments throughout the globe,
combined with the aggressive search of high-z GRBs, is likely
to partly compensate for the difficulties of identifying the GRBs
at the highest redshifts, such selection effects would still have to
be carefully folded in to an analysis of the real data (see, e.g.,
Gou et al. [2004] for a recent discussion of the detectability of
the afterglows of high-redshift GRBs).

5. CONCLUSIONS

We find that high-redshift GRB detections are effective at con-
straining the small-scale power spectrum of cosmological den-
sity fluctuations. Assuming that GRBs trace out the cosmic SFR,
we generate expected GRB detection rates for various cosmo-
logical models that include suppression of the density fluctua-
tions on small scales. The effects of such suppressions become
more notable at high redshifts, where the characteristic collapse

scales are smaller. Correspondingly, we are able to obtain strong
constrains from high-redshift GRB detections. For example, a
Swift detection of a single GRB atz 2 10 or of 10 GRBs atz= 5
would rule out an exponential suppression of the power spectrum
on scales below R, = 0.09 Mpc (exemplified by WDM models
with a particle mass of m, = 2 keV). Constructing the intrinsic
fractional GRB distribution from a luminosity-limited sample
would provide additional constraints that are independent of the
uncertainties in the normalization between GRB and SFRs and
of the uncertainties in the intrinsic luminosity function of GRBs.
We find that a detection of one GRB yr~! at z 2 12 also provides
an upper limit on the running of the spectral index, a2 —0.05,
thus potentially placing constraints on the inflationary potential.
The analysis presented here is also applicable to constraining
other physically-motivated models that include a suppression of
power on small scales, such as decaying charged-particles models
(Kamionkowski & Sigurdson 2005).
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